Balanced Arrays and Fractional Factorial Designs

نویسنده

  • D. V.
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cluster Orthogonal Arrays and Optimal Fractional Factorial Designs

A generalization of orthogonal arrays, namely cluster orthogonal arrays (CLOA), is introduced and some properties and construction methods are studied. The universal optimality of the fractional factorial designs represented by cluster orthogonal arrays is proved.

متن کامل

Taguchi’s Orthogonal Arrays Are Classical Designs of Experiments

Taguchi's catalog of orthogonal arrays is based on the mathematical theory of factorial designs and difference sets developed by R. C. Bose and his associates. These arrays evolved as extensions of factorial designs and latin squares. This paper (1) describes the structure and constructions of Taguchi's orthogonal arrays, (2) illustrates their fractional factorial nature, and (3) points out tha...

متن کامل

Indicator function and complex coding for mixed fractional factorial designs

In a general fractional factorial design the n levels of each factor are coded by the n-th roots of the unity. This device allows a full generalization to mixed designs of the theory of polynomial indicator function already introduced for binary designs by Fontana and the Authors (2000). Properties of orthogonal arrays and regular fractions are discussed.

متن کامل

Generation of Fractional Factorial Designs

The joint use of counting functions, Hilbert basis and Markov basis allows to define a procedure to generate all the fractions that satisfy a given set of constraints in terms of orthogonality. The general case of mixed level designs, without restrictions on the number of levels of each factor (like primes or power of primes) is studied. This new methodology has been experimented on some signif...

متن کامل

Indicator function and complex coding for mixed fractional factorial designs 1 Giovanni Pistone

In a general fractional factorial design, the n-levels of a factor are coded by the n-th roots of the unity. This device allows a full generalization to mixed-level designs of the theory of the polynomial indicator function which has already been introduced for two level designs by Fontana and the Authors (2000). the properties of orthogonal arrays and regular fractions are discussed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011